

Fix the leak: Side-Channel Protection for SGX using Data Location Randomization

Alexandra Dmitrienko Julius-Maximilians-Universität Würzburg

alexandra.dmitrienko@uni-wuerzburg.de

MARCH 4, 2020

High-Tech Women: From Cybersecurity to Artificial Intelligence

Whoaml?

- High-tech woman
- Was born and grown up in Russia
- BSc and MSc in Information Security
 - from St. Petersburg State Polytechnic University
- 10+ years in security research in large research hubs in Europe
 - Ruhr-University Bochum
 - Center for Advanced Security Research in Darmstadt (CASED)
 - ETH Zurich
- Now, Professor at Uni Würzburg
 - Secure Software Systems research group

Did you know?

It is generally hard to get professorship in Germany

It is double as hard for a female in technical disciplines

It is triple as hard for a foreigner

Key Success Factors

Last but not least: Keeping yourself motivated

March 4, 2020

What are high-tech women capable of?

• Anything what women typically do... anything that men typically do

and beyond!

High-Tech Women: From Cybersecurity to Artificial Intelligence

Leaky Intel SGX

Background: Intel Software Guard Extensions

Leaking Information through Side-Channels

Leakage through Paging Side Channel

Single-trace RSA key recovery from RSA key generation procedure of Intel SGX SSL via controlled-channel attack on the binary Euclidean algorithm (BEA)

[Weiser et al., AsiaCCS'18]

[Xu et al., IEEE S&P'15]

Information Leakage through shared hashes

Information Leakage through shared hashes

Side-Channel Mitigations: State-of-the-art

Side-channel resilient code

Annotation-based protections

Oblivious Execution

Requires:

- High expertise
- Vast effort

Requires:

- High expertise
- Significant effort

Extremely high overhead (83x, up to 220×) [Obfuscuro, Ahmad et al., NDSS 2019] [ACSAC 2019]

Our Recent Work: DR.SGX: Automated and Adjustable Side-Channel Protection for SGX using Data Location Randomization

Joint work with

Ferdinand Brasser¹, Tommaso Frassetto¹, Kari Kostiainen², Srdjan Capkun², Ahmad-Reza Sadeghi¹

¹TU Darmstadt, ²ETH Zurich

The Big Picture

Features

compiler-based solution

does not require any code annotations

continuously (re-)randomizes memory locations at runtime

balances between side-channel protection and performance overhead through a configurable parameter

DR.SGX Re-randomization

Performance Evaluation using Nbench

• Without runtime re-randomization (geometric mean about 4x)

Performance Evaluation using Nbench

• With different re-randomization windows (geometric mean up to 12x)

Conclusion

- Leaky SGX
 - Side-channel attacks are a major threat to Intel SGX
 - Were deemed as 'too difficult' and were left out of the attacker model
 - Research has shown it otherwise

- Dr.SGX
 - provides a generic protection for Intel SGX enclaves
 - configurable and developer-friendly
 - much more efficient than ORAM

