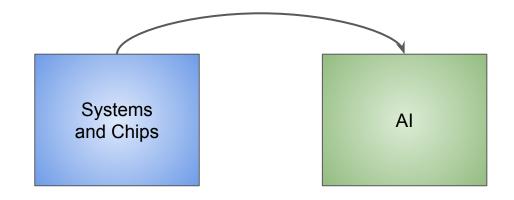
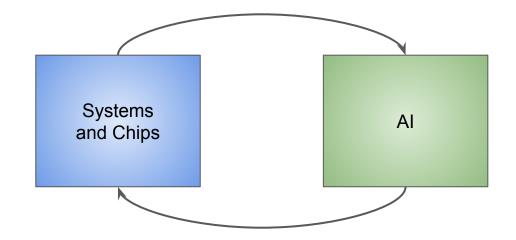
AI for AI Systems and Chips

Azalia Mirhoseini Senior Research Scientist, Google Brain In the past decade, systems and chips have transformed Al.



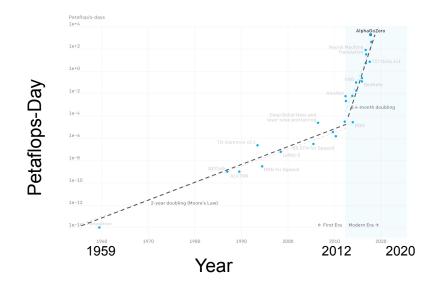
In the past decade, systems and chips have transformed AI.

Now, it's time for AI to transform the way systems and chips are made.



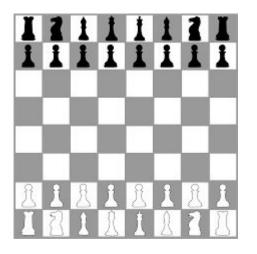
We need significantly better systems and chips to keep up with computational demands of AI

- Between 1959 to 2012, there was a 2-year doubling time for the compute used in historical AI results.
- Since 2012, the amount of compute used in the largest AI training runs doubled every 3.4 months.¹
- By comparison, Moore's Law had an 18-month doubling period!



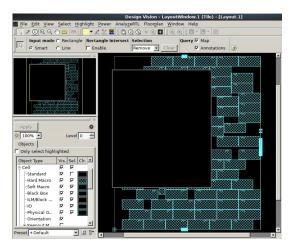
Chip design is a really complex problem and AI can help

Chess



Go

Chip Placement



Number of states ~ 10¹²³

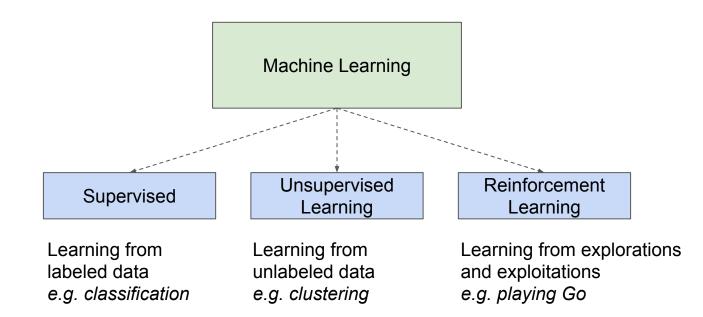
Number of states ~ 10^{360}

Number of states ~ 10⁹⁰⁰⁰

This talk

Twowork on ML for Systems/Chips

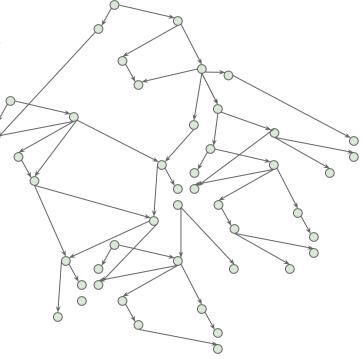
- RL for device placement
- RL for chip placement



RL for systems and chips

Many different problems in systems and hardware require decision-making optimization:

- Computational graph placement:
 - Input: A TensorFlow graph
 - Objective: Placement on GPU/TPU/CPU platforms
- Chip placement:
 - Input: A chip netlist graph
 - Objective: Placement on 2D or 3D grids
- Datacenter resource allocation:
 - Input: A jobs workload graph
 - Objective: Placement on datacenter cells and racks



Some resources for RL

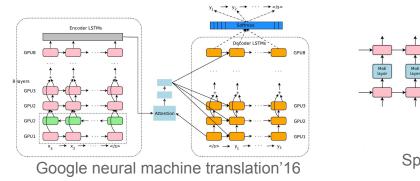
- Reinforcement Learning: An Introduction, Sutton & Barto 2018 (textbook)
 - Thorough definitions & theory, 2nd edition draft available online
- Online courses with lecture slides/videos:
 - David Silver's RL Course (video lectures)
 - UC Berkeley (<u>rll.berkeley.edu/deeprlcourse</u>)
 - Stanford (<u>cs234.stanford.edu</u>)
- Open-Source Reinforcement Learning Examples
 - <u>Tf-agents: An RL library built on top of TensorFlow</u>.
 - o github.com/openai/baselines, gym.openai.com/envs
 - <u>github/carpedm20/deep-rl-tensorflow</u>

This talk

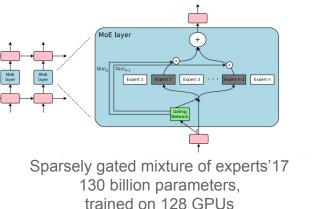
- RL for device placement
- RL for chip placement

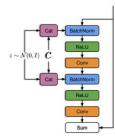
What is device placement and why is it important?

Trend towards many-device training, bigger models, larger batch sizes



e neural machine translation'16 300 million parameters, trained on 128 GPUs



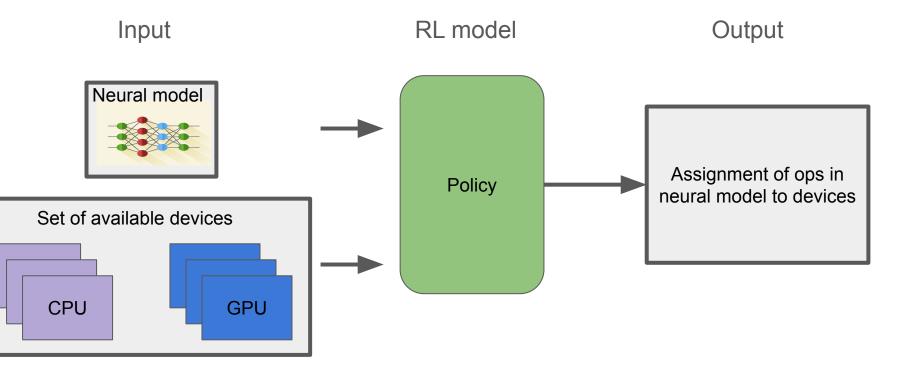


BigGAN'18 355 million parameters, trained on 512 TPU cores

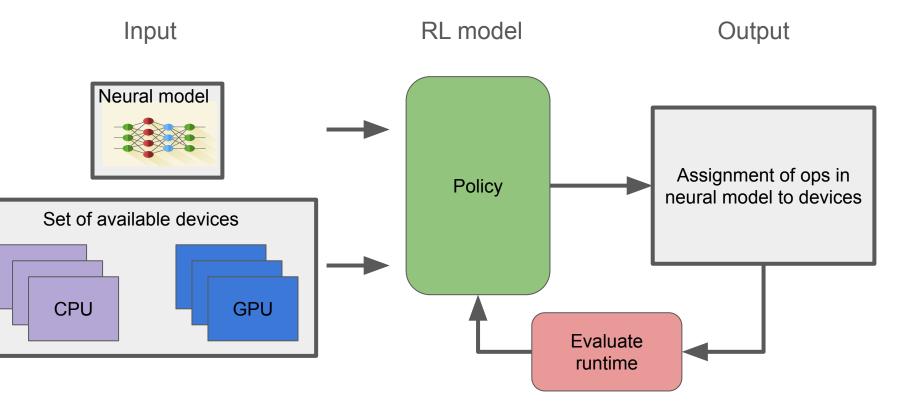
Standard practice for device placement

- Often based on greedy heuristics
- Requires deep understanding of devices: nonlinear FLOPs, bandwidth, latency behavior
- Requires modeling parallelism and pipelining
- Does not generalize well

Posing device placement as an RL problem



Posing device placement as an RL problem

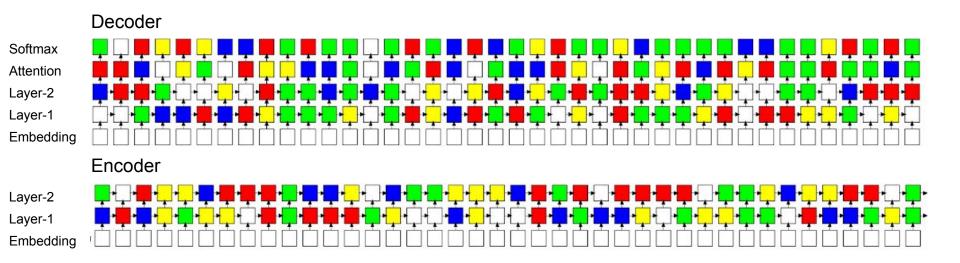


Problem formulation for hierarchical placement

$$J(\theta_g, \theta_d) = \mathbf{E}_{\mathbf{P}(\mathbf{d}; \theta_{\mathbf{g}}, \theta_{\mathbf{d}})}[R_d] = \sum_{g \sim \pi_g} \sum_{d \sim \pi_d} p(g; \theta_g) p(d|g; \theta_d) R_d$$

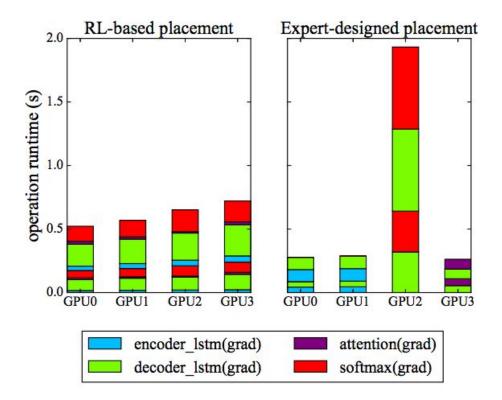
 $J(\theta_{g}, \theta_{d})$: expected runtime θ_{g} : trainable parameters of Grouper θ_{d} : trainable parameters of Placer R_{d} : runtime for placement d

Learned placement on NMT

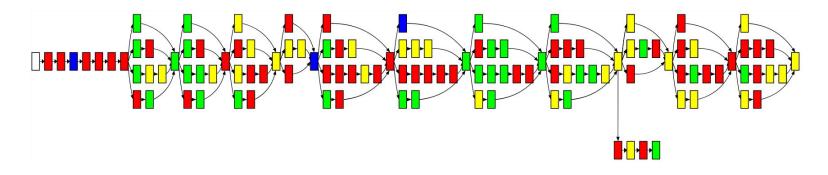


White represents CPU (Ixion Haswell 2300) Each other color represents a separate GPU (Nvidia Tesla K80) Searching over a space of 5²80 possible assignments

Profiling placement on NMT

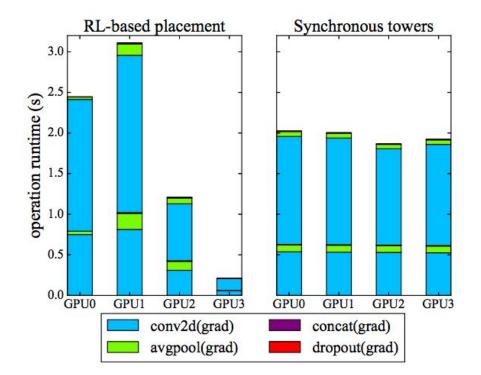


Learned placement on Inception-V3

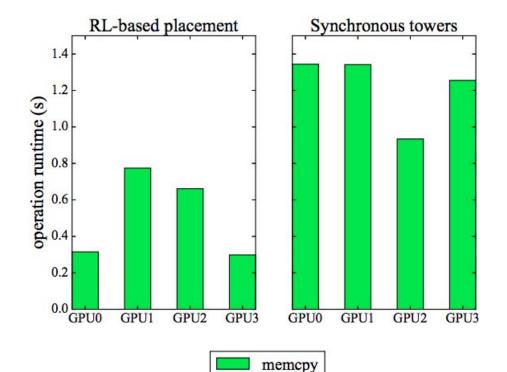


White represents CPU (Ixion Haswell 2300) Each other color represents a separate GPU (Nvidia Tesla K80) Searching over a space of 5⁸³ possible assignments

Profiling placement on Inception-V3



Profiling placement on Inception-V3



Policy optimization for device placement

Model (#devices)	GDP-one (s)	HP (s)	METIS (s)	HDP (s)	Run time speed up over HP / HDP	Search speed up	
-layer RNNLM (2)	0.234	0.257	0.355	0.243	9.8% / 4%	2.95x	
-layer RNNLM (4)	0.409	0.48	OOM	0.490	17.4% / 19.8%	1.76x	
2-layer GNMT (2)	0.301	0.384	OOM	0.376	27.6% / 24.9%	30x	
4-layer GNMT (4)	0.409	0.469	OOM	0.520	14.7% / 27.1%	58.8x	
8-layer GNMT (8)	0.649	0.610	OOM	0.693	-6% / 6.8%	7.35x	
2-layer Fransformer-XL (2)	0.386	0.473	OOM	0.435	22.5% / 12.7%	40x	
4-layer ransformer-XL (4)	0.580	0.641	ООМ	0.621	11.4% / 7.1%	26.7x	
8-layer ransformer-XL (8)	0.748	0.813	ООМ	0.789	8.9% / 5.5%	16.7x	
Inception (2)	0.405	0.418	0.423	0.417	3.2% / 3%	13.5x	Learned
AmoebaNet (4)	0.394	0.44	0.426	0.418	26.1% / 6.1%	58.8x	Policy
2-stack 18-layer WaveNet (2)	0.317	0.376	ООМ	0.354	18.6% / 11.7%	6.67x	1 Oney
4-stack 36-layer WaveNet (4)	0.659	0.988	ООМ	0.721	50% / 9.4%	20x	
GEOMEAN	-	-	-	-	16% / 9.2%	15x	

1- Azalia Mirhoseini*, Hieu Pham*, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean, ICML'17: Device Placement Optimization with Reinforcement Learning

2- Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean, ICLR'18: A Hierarchical Model for Device Placement

3- Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C. Ma, Qiumin Xu Ming Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, James Laudon, arxiv 2019 "GDP: generalized device placement for dataflow graphs"

This talk

- RL for device placement
- RL for chip placement

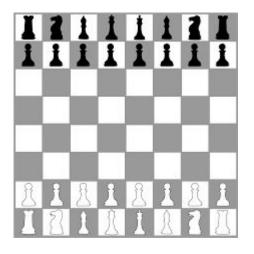
Machine Learning for ASIC Chip Placement

Tech/Research Leads: Anna Goldie and Azalia Mirhoseini Engineering Leads: Joe Jiang and Mustafa Yazgan

Collaborators: Anand Babu, Jeff Dean, Roger Carpenter, William Hang, Richard Ho, James Laudon, Eric Johnson, Young-Joon Lee, Azade Nazi, Omkar Pathak, Quoc Le, Sudip Roy, Amir Salek, Kavya Setty, Ebrahim Songhori, Andy Tong, Emre Tuncer, Shen Wang, Amir Yazdanbakhsh

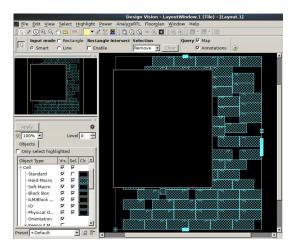
Google Research

Chess



Go

Chip Placement



Number of states ~ 10⁹⁰⁰⁰

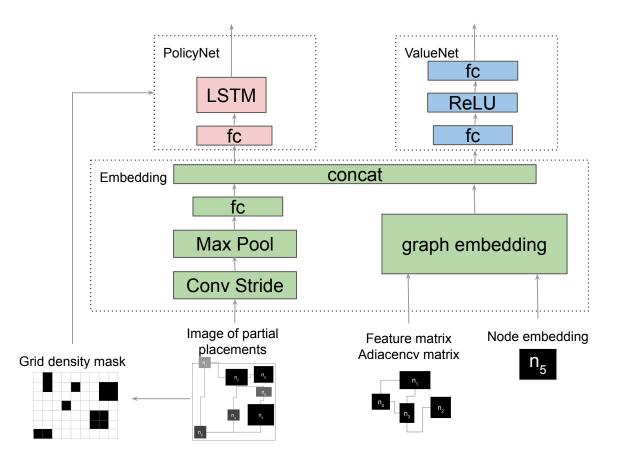
Number of states ~ 10¹²³

Number of states ~ 10³⁶⁰

A Few Complexities

- Problem size is very large (millions or billions of items)
- Multiple objectives: area, timing, congestion, design rules, etc.
- True reward function is very expensive to evaluate (many hours)

Policy architecture

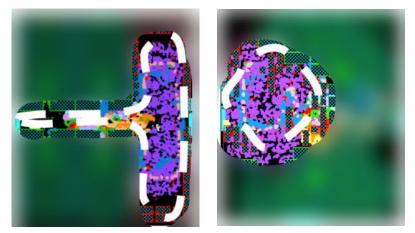


Google Research

Results on a Low Power ML Accelerator Chip

Human Expert

ML Placer



	Proxy Congestion	Proxy Wirelength	
Human Expert	0.76060	0.10135	
ML Placer	0.60646	0.07430	
Improvement	20.2%	26.7%	

Blurred for confidentiality

Google Research

Results on a TPU Design Block

White blurred area are macros (memory) and green blurred area are standard cell clusters (logic) ML placer finds smoother, rounder macro placements to reduce the wirelength

Human Expert

ML Placer

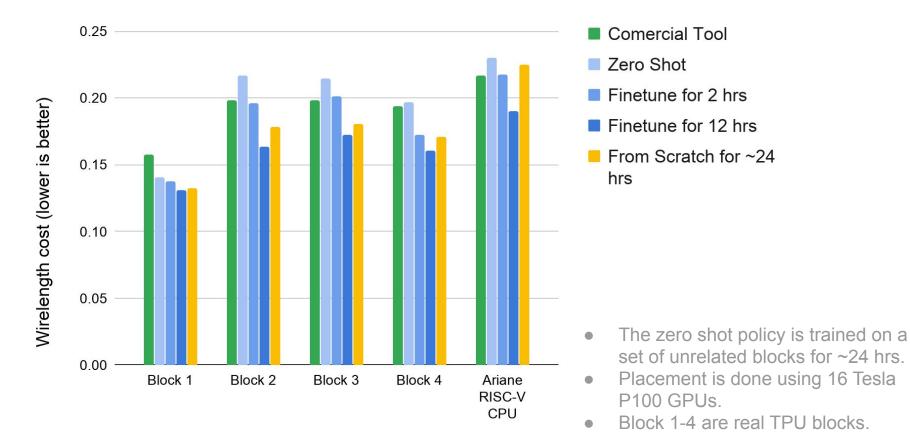
Time taken: **~6-8 person weeks** Total wirelength: 57.07m Route DRC^{*} violations: 1766

DRC: Design Rule Checking

Time taken: **24 hours** Total wirelength: 55.42m (-2.9% shorter) Route DRC violations: 1789 (+23 - negligible difference)

Generalization Results

Google Research

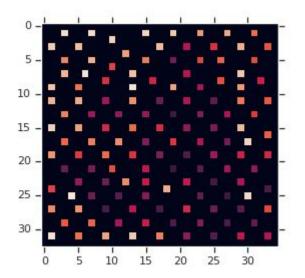


Blocks

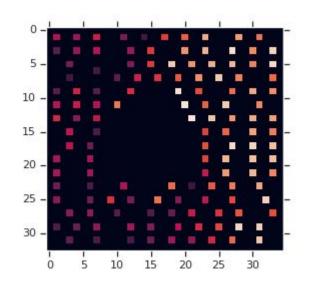
Google Research

Ariane (RISC-V) Placement Visualization

Training policy from scratch



Finetuning a pre-trained policy

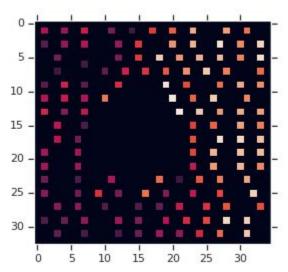


The animation shows the macro placements as the training progresses. Each square shows the center of a macro.

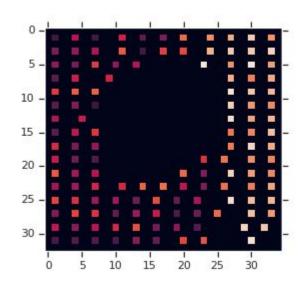
Ariane is an open-source RISC-V processor. See: https://github.com/pulp-platform/ariane

Ariane (RISC-V) Block Final Placement

Placement results of the pre-trained policy (Zero Shot)



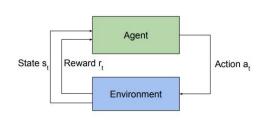
Placement results of the Finetuned policy

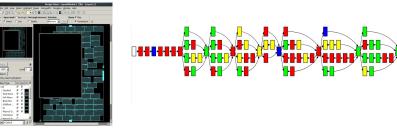


Ariane is an open-source RISC-V processor. See: https://github.com/pulp-platform/ariane

We have gotten comparable or superhuman results on all the blocks we have tried on so far

		Tim	ing	Area (sq. um)	
		Worst Negative Slack (WNS)	Total Negative Slack (TNS)		
Block	Version	(ps)	(ns)	Buf + Inv	Total
A	Manual	72	97.4	49741	830799
	ML Placer	123	75.1	31888	799507
В	Manual	58	17.9	22254	947766
	ML Placer	27	7.04	21492	946771
С	Manual	-6	-0.3	10226	871617
	ML Placer	-8	-0.3	12746	868098





- ML/RL for systems and chip design
 - Improve engineering efficiency by automating and optimizing various stages of the pipeline and potentially enabling global optimization
 - Enable transfer of knowledge across multiple chips/systems
 - Automatically generate designs that explore trade-offs between various optimization metrics
- Recap of this talk:
 - RL for device placement
 - RL for chip placement

. ■

Contact: azalia@google.com Twitter: azaliamirh@