N g

N4

CHARLOTTE

SECURE BOOT FOR FPGAS

HEADS HARDWARE AND EMBEDDED DESIGN AND SECURITY LAB

Lab Director
Fareena Saqib, Assistant Professor

Email: fsagib(@uncc.edu
Oftice: EPIC 2164

Phone: 704-687-8098&

http://uncc.edu

Why Engineering

“Women are often under-represented in the academic
and professional fields of engineering.” wiipedia Women in Engineering

This is an exciting time to participate to push Women for
change

I 4
.

i _"Q o
Transportation
f g‘..‘ - | - :

Electronics: The Heart of Digital

Business Operations « Enterprise Culture~ 3rd Party Ecosystem

Hardware Security

Cyber security traditionally meant software, network and
data security considering hardware as root of trust. This
assumption is no longer true with evolving
semiconductor business landscape.

|IOT Challenges of connected devices

SERVERS

A

Connecting devices, that deliver value through
smart interfaces and user experience EDGE NODES

= Long life cycles of loTs

" Provisioning keys and key management life
cycle

= Security assessment of equipment that were
never intended to be connected

* Device identification for device-to-device
communication

= Availability, Scalability and system resilience

GATEWAY

Requires holistic view of
“““““““““ == device to gateway to cloud
and the communication

= Firmware updates between them.

Secure Boot Process

* An Autonomous, Self-Authenticating, and Self-
Contained Secure Boot Process for Field-
Programmable Gate Arrays using PUF.

* TPM based secure hardware framework for boot - | R
process and over the air update for [Sy
reconfigurable computing. e iy

* There are physical as well as remote threats. In Zyngq 7020 SoC S
. Xterna
this work we study invasive and non invasive Zynq BootROM loads S
FSBL from Boot image
attacks on keys, data and boot process. . g) FSBLelf
FSBL programs PL and i; llijrjlc;rg(l))tt'eecllfbustream
* The research covers mutual authentication, key passes control to U-Boot PR T
management and secure boot process for FPGAs. v 3) Device tree
U-Boot loads the OS 6) Root file system
images (Linux, software 7) Data files/apps.
apps. etc.)

Device Boot

* A device boot-up can be divided into sequence of
processes:

Boot ROM

Firmware (Boot ROM)
Boot Loaders
Operating System
Applications

Boot Loaders

Systems

* An adversary having access to a process can exploit
all the layers above it.

Applications

Boot Process

“FPGA based SoCs have reconfigurable fabric, processors,
buses and interconnects.

-Pfrogrammable Logic (PL) fabric in an FPGA is composed
of:

> Look-Up Tables (LUTs)
° Memory elements
° Computation elements, e.g., DSP and ALU

EA - B L -] A i LT R b s) FEFVYEraIon=svuly,
81 00 €2 00 OC 37 TA 30 32 30 63 €C 67 34 38 34 1.b..7z020clg4sd
90 63 00 0B 32 30 31 3% 2F 31 I 2F 32 36 00 €4 .c..2018/11/26.8
90 9% 31 30 3A 39 30 3A 1 34 00 &5 Q0 30 BA FC ,.10:40:14.e.=°¢
fF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Syidbysvivrsviv
fF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF SyPdvysvivryiive
80 00 00 BB 11 22 00 44 FF FF FF FF FF FF FF FF ...=. " . DFETYVITE
&% @99 55 66 20 00 00 00 30 02 20 01 00 00 Q0 00 2»OUf ...0.8

§0 02 00 01 00 OO OO0 OCQ 30 OO &0 01 OO0 0D 00 00 D....... 0.€....4

o I t t g0 00 00 00 30 OO0 80 01 OO0 OO OO0 O7F 20 OO0 00 OO «..0.€.. - e
n erconnec S g0 00 00 O0 30 02 60 01 OO0 OO OO0 OO0 30 01 20 0L saelaaueaalla &
82 00 3F E5 30 01 CO 01 00 00 00 00 30 Ol 80 0l ..?40.R.....0.810
83 72 70 93 30 00 80 01 OO0 OO0 OO0 0% 20 00 OO0 00 .rp™0a€aisus oot
80 00 CO 01 00 OO 04 01 30 00O AO Ol 00 00 O5 O1 I
A

= In SRAM based FPGAs, the input configuration is stored in Jo o0 o 01 00 o0 G0 20 30 2 90 G190 20 00 G0 D.A.L...0..LL

80 00 00 00 20 00 00 OO0 20 00 Q0 00 20 0O Q0 OO0

a bitstream. §o 00 20 91 00 0 00 00 30 00 80 oL 60 00 00 0L 0. -...-0 €. .|
”

= At boot, the FPGA will configure the PL fabric with the
bitstream configuration.

= Some FPGAs also allow runtime partial reconfiguration of
the PL fabric.

Boot Process

= Modification of the bitstream in a SRAM based FPGA leads to modification of
the underlying architecture.

" In the hands of an adversary that can result in addition of malicious logic or
even formation of information leaking side channels.

= Commercial FPGAs implement Secure Boot by implementing an on-board AES
block and HMAC block.

" There are two zones for storing keys:
" One Time Programmable eFuses

= Battery Powered RAM

Secure Boot In FPGAs

= The FSBL and the bitstream are encrypted using the symmetric key. The Boot ROM
decrypts the FSBL whereas the FSBL uses the AES core to decrypt the bitstream.

= Additionally, there is software support to implement RSA based authentication.

= There are certain shortcomings with this implementation:
= BBRAM is not practical since it requires indefinite power supply for operation.

= Efuses once programmed cannot be changed, therefore if the key is once discovered, it
cannot be modified.

= Once the encrypted payload has been decrypted and has been brought into the main
memory, it is susceptible to Time of Check to Time of Use attacks (TOCTTOU).

= The provided cryptographic cores are only usable by the Boot ROM and the FSBL. These cores
cannot be used for any additional purposes.

TPM Based Secure Boot for FPGASs

Uncontrolled
Process

FPGA Boot up >

BootROM
execution

Handoff to FSBL

Controlled
Process

Board
Initialization

TPM Startup

Read Boot

package from
memory

1

Read Boot package Booting process
from memory continues

Compute PCR based
SHA256 on the TPM

True

Compare computed PCR
value with reference value.

False

@oot process stoppecD

Figure: TPM providing secure boot to FPGA

TPM based integrity verification

Ll

_____ S5 ntinuing normally

Figure: Secure Boot Process completes successfully

Figure: Bitstream could not be verified successfully

Physical Unclonable Functions

* PUFs are embedded test structures to extract and digitize the process variations in the
features, that are unique just like a finger print.

* PUFs rely on physical properties such as path delays, response behavior to glitches, initial
boot-time values, threshold voltage of transistors.

* Strong or weak PUFs, and their applications.

* Physical Unclonable Functions (PUF) provide on-the-fly tamper resistant authentication.

* Strength of a PUF can be measured using metrics:

Challenge Input

* Randomness, Uniqueness, Reliability and entropy.

Security Research: Physical Unclonable
Functions PUFs

HELP entropy is path delays of existing functional units.
On-chip bitstring generation provides real-time identification.

Clk, | Input Challenge 1s 2—vector sequence |+ | ' P PNDifvf ule
- . ° | Challenge selection
' module v +
-
| implementation Clock strobe | £ | Block v
: of AES Module / g RAM (¢—p| Modulus module
| sbox-mixedcol v § (BRAM) +
: Xilinx DCM 4+ BitGen. module
v RS v
- path v | Bitstring + helper data
: > Storage module

- delays

Privacy Preserved Authentication in
Distributed Environment

A privacy-preserving, mutual authentication protocol using dual helper data

— 5 S WW
200111 Enrollment
2 Token | Dual Helper Data [y7qyifier [Verifier
Z Algorithm Database Challenge
E C Token HelpD ¢ Verifier HelpD *
S |14 . [ii[t[oTt i ofofofo[t[o[1 o[t[i[t]o] [1[1]o[o[t]o[ofo]x]o[1]o]t[o[1]0[1]1]
S 5 e 1 5 10 15 1 5 10 15
§ M bitwise AND’ed Helde Helper Data I
Zstrong Ojreg. £ [i[1[o[o[1oJofoJolo] o[i[o[i[o[i[0] e A=Y DD
r 1) 10 15 .
0 % Token RespBS Verifier RespBS ’ Regeneratlon :
1 5 10 15 1f] I(;Il|1|1|<5>|1|0|1\0\11|1|0|1|1|0|0|0\01 [‘;11l1|1|0|1|1|0|0|0|1|0|1|010I0l0l0| ¢ [Challenge H
Index of modPND,, for chip C, Nakd Verificr Ah 4 AA4 i €===mmmmu- 4---- Device ID
Token data point would need to change by at least LO[1]1[o[1]1]1[0[0]o] StrongBS 0[1]o[1]1]o]0] StrongBS I
2*margin+] to cause bit flip error, e.g., with margin = 2, Token StrongBS ¢?__ (ves in this example) R’ I Filter and match
from 7 to 12. -
(O OXITORO o |
(@) (b) (© I

Token Verifier/Control

Sponsored by NSF

Secure Boot for FPGAS: An Autonomous, Self-
Authenticating and Self-Contained Secure Boot Process

= Existing work for security of bitstream security in sheegufgdsta FPGA Programmable Logic

FPGASs provides limited security. St (D000, 11202 TTIoL.
TTTIT... N 4E'.mvoll"Boot config. pm

" In [1] and [2], the First Stage Boot Loader (FSBL) is [ICAT interface | @ Read config data

Aftack scenario

-
.
.

assumed to be trustworthy. i il L § § - - - @ Timepaths
BRAM ’ SHAS “
230 i - : .
. L 3 PUF mod 1@ Compute digest
= The FSBL loads a FPGA bitstream consisting of two W) v j:
partitions, static and dynamic. pathdelays | ! [SHA-3 (@ Use digest as challenze
97 | |349 \ [functional mode ! and fime paths
: . : . One module with 2 modes
=" The static partition consists of a Physical @ Decrypt 2nd stage
Unclonable Function implementation. @Generatekey ey [(SSBD
HELP Algorithm [MTTOIOITO00L 1o Aks (1oL,

Boot

. a4 Check key
" The PUF response acts as the key for decrypting ‘ Enroll | Boot ® ; N
encrypted dynamic partition which contain S ¥
application logic. Helper Data Un-Encrypted SSBI Encrypted SSBI

External NVM

http://ece-research.unm.edu/jimp/pubs/FPGABulletProof.pdf
http://ece-research.unm.edu/jimp/pubs/FPGABulletProof.pdf

Multilayer camoflauged Secure Boot for
SoCs

= The secure boot is a multilayered process, The
enrollment in done in trusted environment.

Input key to unlock
= The first stage Authentication Bitstream (AUB) the APB
has a PUF to generate unique per device keys to s
decrypt the 2"9 stage application bitstream. o oL /

“A unique bitstream (APB) is generated per device R s
which consists of stripped and corrupted frames | [P¢Vetupiment = Apoliatiss
at the LUT g ranularity. Device Attestation [€——| Bitstream

*The correct LUT configuration for the device is
sent by the server after successful light weight
device authentication.

Boot and Device Attestation

Server Client FPGA
¢ Apply AUB to PL
Open Connection Use challenge c to generate R

DEC APB=AES(APB, Ry)
Copy decrypted APB in main memory

Decrypt ENC(SF,Ry)
M = SF XOR (CTR++)
< ENC M =ENC(M, Ry
Use ENC M to find Client ID Set FSBL to receive frames from server

M = Missing Frame Data + Key information
ENC FD =ENC(M, Ry)

A 4

Verify Sign + HMAC using P
FSBL applies frames
Bring up PL and apply obfuscation key

LUT configuration

Comparison of before and after.

Readback XDevcfg Status Register

Original frame contents at address: 0x0000239b
00
00
00
00
00000000POOOOOOOO0OOOOO000OOO000O000
00
00
00

ress: 0x0000239b

0000000000000000000000000000000000008080DOOOOOOO0O0OO000
00

00
000000000000000000000000000000000O0O0O0O0O0O0OO0OO0OO0OOOOOOOOOOO0OO0OO0OO0OO0OO0OOOOOOOOOOOOO0OO0OO0OO0OO0OOOOOOOOOOOOOO
O 00¢1008H0O0O0O0O0O0O0O0O0O0O0O0OO0OOOOOOOOOOOOOOOOO0O0O0OO0OO0OO0OO0OOOOOO0OOOOO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOO0OO0OOOOOOONOOOO
00
000O0O0O0O0OOOOOOOOOOO0OO0OO0OO0OO0OO0OOOO0OOOOOOO0OO0OO0OO0OO0OO0OO0OOOOOOOOOOOO
000000000000000O0O0O0OO0OO0OOOO0OO0OO0OOOOOOOOOOOOOOOOOOOOOOO
00000000

PL Brought UP

CTLO Register wvalue: 0x00000501

FAR Register value: 0x0000239d

Thank you !!!

